7 hằng đẳng thức đáng nhớ và bài tập áp dụng

7  hằng đẳng thức đáng nhớ lớp 8

1)      (A + B)2 = A2 + 2AB + B2

2)      (A – B)2 = A2 – 2AB + B2

3)      A2 – B2 = (A – B)(A + B)

4)      (A + B)3 = A3 + 3A2B + 3AB2 + B3

5)      (A – B)3 = A3 – 3A2B + 3AB2 – B3

6)      A3 + B3 = (A + B)(A2 – AB + B2)

7)      A3 – B3 = (A – B)(A2 + AB + B2)

Bài tập áp dụng

Dạng 1 : tính giá trị của biểu thức.

Bài 1 :tính giá trị của biểu thức : A = x2 – 4x + 4 tại x = -1

Ta có : A = x2 – 4x + 4 = A = x2 – 2.x.2 + 22 = (x – 2)2

Tại x = -1 : A = ((-1) – 2)2=(-3)2= 9

Vậy : A(-1) = 9

Dạng 2 : Chứng minh biểu thức A không phụ thuộc vào biến :

B = (x – 1)2 + (x + 1)(3 – x)

GIẢI.

B =(x – 1)2 + (x + 1)(3 – x)

= x2 – 2x + 1 – x2 + 3x + 3 – x

= 4 : hằng số không phụ thuộc vào biến x.

Dạng 3 : Tìm giá trị nhỏ nhất của biểu thức :

C = x2 – 2x + 5

GIẢI.

Ta có : C = x2 – 2x + 5 = (x2 – 2x + 1) + 4 = (x – 1)+ 4

Mà : (x – 1)≥ 0 với mọi x.

Suy ra : (x – 1)+ 4 ≥ 4 hay C ≥ 4

Dấu “=” xảy ra khi : x – 1 = 0 hay x = 1

Nên : Cmin = 4 khi x = 1

Dạng 4 : Tìm giá trị lớn nhất của biểu thức :

D = 4x – x2

GIẢI.

Ta có : D = 4x – x= 4 – 4 + 4x – x= 4 – (4 + x– 4x) = 4 – (x – 2)2

Mà : -(x – 2)≤ 0 với mọi x.

Suy ra : 4 – (x – 2)≤ 4 hay D ≤ 4

Dấu “=” xảy ra khi : x – 2 = 0 hay x = 2

Nên : Dmax = 4 khi x = 2.

Dạng 5 :Chứng minh đẳng thức :   

(a + b)3 – (a – b)3 = 2b(3a2 + b2)

GIẢI.

VT = (a + b)3 – (a – b)3

(a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3)

= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b – 3ab2 + b3

= 6a2b + 2b3

= 2b(3a2 + b2) ->đpcm.

Vậy : (a + b)3 – (a – b)3 = 2b(3a2 + b2)

Dạng 6  : Chứng minh bất đẳng thức :   

Bài tập áp dụng 7 hằng đẳng thức đáng nhớ nâng cao 

Bài 1. Cho đa thức 2x² – 5x + 3 . Viết đa thức trên dưới dạng 1 đa thức của biến y trong đó y = x + 1.

Lời Giải

Theo đề bài ta có:  y = x + 1 => x = y – 1.

A = 2x² – 5x + 3

= 2(y – 1)² – 5(y – 1) + 3 = 2(y² – 2y + 1) – 5y + 5 + 3 = 2y² – 9y + 10

Bài 2. Tính nhanh kết quả các biểu thức sau:

a) 127² + 146.127 + 73²

b) 98 .28 – (184 – 1)(184 + 1)

c) 100² – 99² + 98² – 97² + …+ 2² – 1²

d) (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)

Lời Giải

a) A = 127² + 146.127 + 73² = 127² + 2.73.127 + 73²  = (127 + 73)² = 200² = 40000 .

b) B = 98 .28 – (184 – 1)(184 + 1) = 188  – (188  – 1) = 1

c) C = 100² – 99² + 98² – 97² + …+ 2² – 1²

= (100 + 99)(100 – 99) + (98 + 97)(98 – 97) +…+ (2 + 1)(2 – 1)

= 100 + 99 + 98 + 97 +…+  2 + 1 = 5050.

d) D = (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)

= (20² – 19²) + (18² – 17²) + (16² – 15²)+ …+ (4² – 3²) + (2² – 1²)

= (20 + 19)(20 – 19) + (18 + 17)(18 – 17) + ( 16 +15)(16 – 15)+ …+ (4 + 3)(4 – 3) + (2 + 1)(2 – 1)

= 20 + 19 + 18 + 17 + 16 +15 + …+ 4 + 3 + 2 + 1 = 210

Bài 3. So sánh hai số sau, số nào lớn hơn?

a) A = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) và B = 232

b) A = 1989.1991 và B = 19902

Lời Giải

a) Ta nhân 2 vế của A với 2 – 1, ta được:

A = (2 – 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

Ta áp dụng đẳng thức ( a- b)(a + b) = a² – b² nhiều lần, ta được:

A = 232 – 1.

=> Vậy A < B.

b) Ta đặt 1990 = x => B = x²

Vậy A = (x – 1)(x + 1) = x² – 1

=> B > A là 1.

Bài 4. Chứng minh rằng:

a) a(a – 6) + 10 > 0.

b) (x – 3)(x – 5) + 4 > 0.

c) a² + a + 1 > 0.

Lời Giải

a) VT = a² – 6a + 10 = (a – 3)² + 1 ≥ 1

=> VT > 0

b) VT = x² – 8x + 19 = (x – 4)² + 3 ≥ 3

=> VT > 0

c) a² + a + 1 = a² + 2.a.½ + ¼ + ¾ = (a + ½ )² + ¾ ≥ ¾ >0.

Bài 5. Tìm giá trị nhỏ nhất của các biểu thức sau:

a) A = x² – 4x + 1

b) B = 4x² + 4x + 11

c) C = 3x² – 6x – 1

Lời Giải

a) Ta sẽ biến đổi A= x² – 4x + 1 = x² – 4x + 4 – 3 = ( x- 2)² – 3

Do ( x- 2)² > 0 nên => ( x- 2)² – 3 ≥ -3

Vậy giá trị nhỏ nhất của biểu thức A(Amin) = -3  khi và chỉ khi x = 2.

b) B = 4x² + 4x + 11 = (2x + 1)² + 10

Vậy Bmin  = 10 khi và chỉ khi x = -½.

c) C = 3x² – 6x – 1 = 3(x – 1)² – 4

Vậy Cmin  = -4 khi và chỉ khi x = 1.

Bài 6. Cho a + b + c = 2p. Chứng minh rằng: 2bc + b² + c² – a² = 4p(p – a)

Lời Giải

Ta sẽ đi biến đổi VP.

VP = 2p(2p – 2a) = (a + b + c)( a + b – c) = ( b + c )² – a² = b² + 2bc + c² – a² = VT (đccm)

Bài 7. Hiệu các bình phương của 2 số tự nhiên chẵn liên tiếp bằng 36. Tìm hai số ấy.

Lời Giải

Gọi 2 số chẵn liên tiếp là x và x + 2 (x chẵn). Ta có:

(x + 2)² – x² = 36

<=> x² + 4x + 4 – x² = 36

<=> 4x = 32

<=> x = 8

=> số thứ 2 là 8+2 = 10

Đáp số: 8 và 10

Bài 8. Tìm 3 số tự nhiên liên tiếp biết rằng tổng các tích của từng cặp 2 số trong 3 số ấy bằng 74

Lời Giải

Gọi 3 số tự nhiên liên tiếp là: x – 1, x, x + 1 ( đk: x>0)

Vậy ta có:  x(x – 1) + (x – 1)(x + 1) + x(x + 1)= 74

Ta nhân vào và rút gọn đi ta có:

x² = 25 <=> x = -5 , x = 5

So sánh với Đk: x>o => x = 5 (t/m).

Vậy đáp số: 4, 5, 6.

 

Thông qua lý thuyết của 7 hằng đẳng thức đáng nhớ và bài tập áp dụng hy vọng bạn sẽ nắm vững kiến thức môn toán lớp 8. Chúc các bạn học tốt

Related Posts

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *